Syllabus for B.Tech (Electrical Engineering) Second Year & 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

3rd Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M (CS) 301</td>
<td>Numerical Methods</td>
<td>2 1 0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>M302</td>
<td>Mathematics-III</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EC(EE)301</td>
<td>Analog Electronic circuits</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EC(EE)302</td>
<td>Digital Electronic circuit</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE-301</td>
<td>Electric Circuit theory</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>EE-302</td>
<td>Field theory</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC(EE)391</td>
<td>Analog & Digital Electronic circuit</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>M (CS) 391</td>
<td>Numerical Methods</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>EE-391</td>
<td>Electric Circuit Theory</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>HU-381</td>
<td>TECHNICAL REPORT WRITING & LANGUAGE LABORATORY PRACTICE</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 11 7

Total of Semester: 32 27

4th Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-401</td>
<td>Values and Ethics in Profession</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PH(EE)-401</td>
<td>Physics-II</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ME(EE)411</td>
<td>Thermal Power Engineering</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CH-401</td>
<td>Basic Environmental Engineering & Elementary Biology</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE-401</td>
<td>Electric Machine-I</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>EE-402</td>
<td>Electrical & Electronic measurement</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PH(EE)-491</td>
<td>Physics-II</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ME(EE)481</td>
<td>Thermal Power Engineering Lab</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>EE-491</td>
<td>Electric Machine-I</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>EE-492</td>
<td>Electrical & Electronic measurement</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 12 8

Total of Semester: 32 28
III Semester

NUMERICAL METHODS
Code : M(CS) 301
Contacts : 2L+1T
Credits : 2

Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors. (4)

Interpolation: Newton forward/backward interpolation, Lagrange’s and Newton’s divided difference Interpolation. (5)

Numerical integration: Trapezoidal rule, Simpson’s 1/3 rule, Expression for corresponding error terms. (3)

Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method. (6)

Numerical solution of Algebraic equation: Bisection method, Regula Falsi method, Newton-Raphson method. (4)

Numerical solution of ordinary differential equation: Euler’s method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method. (6)

Text Books:

References:
2. Baburam: Numerical Methods, Pearson Education.
4. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
5. Srimanta Pal: Numerical Methods, OUP.

MATHEMATICS
Code: M 302
Contacts: 3L +1T = 4
Credits: 4

Note 1: The entire syllabus has been divided into four modules.
Note 2: Structure of Question Paper
There will be two groups in the paper:

Group A: Ten questions, each of 2 marks, are to be answered out of a total of 15 questions, covering the entire syllabus.
Group B: Five questions, each carrying 10 marks, are to be answered out of (at least) 8 questions. Students should answer at least one question from each module.

[At least 2 questions should be set from each of Modules II & IV. At least 1 question should be set from each of Modules I & III. Sufficient questions should be set covering the whole syllabus for alternatives.]

Module I: Fourier Series & Fourier Transform [8L]

Topic: Fourier Series:
Sub-Topics: Introduction, Periodic functions: Properties, Even & Odd functions: Properties, Special wave forms: Square wave, Half wave Rectifier, Full wave Rectifier, Saw-toothed wave, Triangular wave. (1)

Euler’s Formulae for Fourier Series, Fourier Series for functions of period 2π, Fourier Series for functions of period 2l, Dirichlet’s conditions, Sum of Fourier series. Examples. (1)

Topic: Fourier Transform:
Sub-Topics: Fourier Integral Theorem (statement only), Fourier Transform of a function, Fourier Sine and Cosine Integral Theorem (statement only), Fourier Cosine & Sine Transforms. Fourier, Fourier Cosine & Sine Transforms of elementary functions. (1)

Convolution Theorem (statement only), Inverse of Fourier Transform, Examples. (2)

Module II: Calculus of Complex Variable [13L]

Topic: Introduction to Functions of a Complex Variable.
Sub-Topics: Complex functions, Concept of Limit, Continuity and Differentiability. (1)

Analytic functions, Cauchy-Riemann Equations (statement only). Sufficient condition for a function to be analytic. Harmonic function and Conjugate Harmonic function, related problems. (1)

Construction of Analytic functions: Milne Thomson method, related problems. (1)

Topic: Complex Integration.
Sub-Topics: Concept of simple curve, closed curve, smooth curve & contour. Some elementary properties of complex Integrals. Line integrals along a piecewise smooth curve. Examples. (2)

Cauchy’s theorem (statement only). Cauchy-Goursat theorem (statement only). Examples. (1)

Cauchy’s integral formula, Cauchy’s integral formula for the derivative of an analytic function, Cauchy’s integral formula for the successive derivatives of an analytic function. Examples. (2)
Taylor’s series, Laurent’s series. Examples

Topic: Zeros and Singularities of an Analytic Function & Residue Theorem.

Sub-Topics: Zero of an Analytic function, order of zero, Singularities of an analytic function. Isolated and non-isolated singularity, essential singularities. Poles: simple pole, pole of order m. Examples on determination of singularities and their nature.

Residue, Cauchy’s Residue theorem (statement only), problems on finding the residue of a given function, evaluation of definite integrals: \[\int_0^\pi \frac{\sin x}{x} \, dx \quad \text{and} \quad \int_0^{2\pi} \frac{d\theta}{a + b\cos\theta + c\sin\theta} \quad \int_c \frac{P(z)}{Q(z)} \, dz \] (elementary cases, \(P(z) \) & \(Q(z) \) are polynomials of 2\(^{nd} \) order or less).

Topic: Introduction to Conformal Mapping.

Sub-Topics: Concept of transformation from \(z \)-plane to \(w \)-plane. Concept of Conformal Mapping. Idea of some standard transformations. Bilinear Transformation and determination of its fixed point.

Module III: Probability [8L]

Topic: Basic Probability Theory

Sub-Topics: Classical definition and its limitations. Axiomatic definition. Some elementary deduction: i) \(P(O)=0 \), ii) \(0\leq P(A)\leq 1 \), iii) \(P(A')=1-P(A) \) etc. where the symbols have their usual meanings. Frequency interpretation of probability.

Addition rule for 2 events (proof) & its extension to more than 2 events (statement only). Related problems. Conditional probability & Independent events. Extension to more than 2 events (pairwise & mutual independence). Multiplication Rule. Examples. Baye’s theorem (statement only) and related problems.

Topic: Random Variable & Probability Distributions. Expectation.

Sub-Topics: Definition of random variable. Continuous and discrete random variables. Probability density function & probability mass function for single variable only. Distribution function and its properties (without proof). Examples. Definitions of Expectation & Variance, properties & examples.

Some important discrete distributions: Binomial & Poisson distributions and related problems. Some important continuous distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only.

Module IV: Partial Differential Equation (PDE) and Series solution of Ordinary Differential Equation (ODE) [13L]

Topic: Basic concepts of PDE.

Sub-Topics: Origin of PDE, its order and degree, concept of solution in PDE. Introduction to different methods of solution: Separation of variables, Laplace & Fourier transform methods.
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

Topic: Solution of Initial Value & Boundary Value PDE’s by Separation of variables, Laplace & Fourier transform methods.

Sub-Topics:
PDE I: One dimensional Wave equation. (2)
PDE II: One dimensional Heat equation. (2)
PDE III: Two dimensional Laplace equation. (2)

Topic: Introduction to series solution of ODE.

Sub-Topics: Validity of the series solution of an ordinary differential equation. General method to solve $P_0 y'' + P_1 y' + P_2 y = 0$ and related problems. (2)

Topic: Bessel’s equation.

Sub-Topics: Series solution, Bessel function, recurrence relations of Bessel’s Function of first kind. (2)

Topic: Legendre’s equation.

Sub-Topics: Series solution, Legendre function, recurrence relations and orthogonality relation. (2)

TOTAL LECTURES: 42

Text Books:
3. Das N.G.: Statistical Methods, TMH.

References:
5. Ramana B.V.: Higher Engineering Mathematics, TMH.

ANALOG ELECTRONIC CIRCUITS
EC (EE)-301

Credit: 3 Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filters & Regulators: Capacitor filters, π-section filter, ripple factor, series and shunt voltage regulator, percentage regulation, Concept of SMPS.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Transistor biasing & stability: Q point, Self Bias-CE, Compensation techniques, h-model of Transistor, Expression of voltage gain, current gain, input & output impedance, Trans-resistance & Trans-conductance, Emitter follower circuits, High frequency model of Transistor.</td>
<td>5</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech(Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

Transistor amplifier: RC coupled amplifier, Function of all components, Equivalent circuit, derivation of voltage gain, Current gain, Input impedance & output impedance, Frequency response characteristics, Lower & upper half frequencies, Bandwidth, Concept of Wide band amplifier.

Feed back amplifier & Oscillators: Concept of Feed back, Negative & Positive feedback, Voltage/Current, Series/Shunt feedback, Barkhausen criterion, Colpit’s, Phase shift, Wien bridge, & Crystal oscillators.

Operational amplifier: Ideal OPAMP, Differential amplifier, Constant current source (Current mirror etc), Level shifter, CMRR, Open & closed loop circuits, importance of feedback loop (positive & negative), inverting & non-inverting amplifiers, Voltage follower/Buffer circuits.

Power amplifier: Class A, B, AB, C, Conversion efficiency, Tuned amplifier.

Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.

Special function circuits: VCO & PLL

Text Books:
1. Microelectronic Circuits, Sedra & Smith, Oxford University Press.
3. Electronic devices & Circuits, Balbir Kumar & Shail B. Jain, PHI.
4. OpRamps and Linear IC’s, R.A. Gayakwad, PHI.

Reference Books:
4. Operational Amplifier & Linear IC’s, Bell, Oxford University Press.

DIGITAL ELECTRONICS CIRCUITS
EC (EE)-302

Credit: 3
Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data and number system: Binary, Octal and Hexadecimal representation and their conversion, BCD, ASCII, EBDIC, Gray codes and their conversion, Signed binary numbers representation with 1’s and 2’s complement methods, Binary arithmetic.</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Boolean algebra: Various logic gates and their truth tables and circuits, Representation in SOP and POS forms, Minimization of logic expressions by algebraic method, K-map method.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Combinational circuits: Adder and sub tractor circuit, Circuit of Encoder,</td>
<td>5</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Memory systems: RAM, ROM, EPROM, EEROM</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Sequential circuits: Basic memory elements, S-R, J-K, D, and T Flipflop, various types of Registers, Counters & their design, Irregular counter, State table & State transition diagram, Sequential circuit design methodology.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Different types of A/D and D/A conversion techniques.</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Logic families: TTL, ECL, MOS & CMOS, their operation and specification.</td>
<td>5</td>
</tr>
</tbody>
</table>

Text Books:
3. Fundamental of Digital Circuits, A. Anand Kumar, PHI.

Reference Books:
1. Digital Logic Design, Morris Mano, PHI.

ELECTRIC CIRCUIT THEORY

EE-301

Credit: 4

Contact: 3L+1T

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Continuous & Discrete, Fixed & Time varying, Linear and Nonlinear, Lumped and Distributed, Passive and Active networks and systems. Independent & Dependent sources, Step, Ramp, Impulse, Sinusoidal, Square, Saw tooth signals.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Coupled circuits: Magnetic coupling, Polarity of coils, Polarity of induced voltage, Concept of Self and Mutual inductance, Coefficient of coupling, Modeling of coupled circuits, Solution of problems.</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Laplace transforms: Impulse, Step & Sinusoidal response of RL, RC, and RLC circuits. Transient analysis of different electrical circuits with and without initial conditions. Concept of Convolution theorem and its application, Solution of Problems with DC & AC sources.</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Fourier method of waveform analysis: Fourier series and Fourier Transform (in continuous domain only). Application in circuit analysis, Solution of Problems.</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Network equations: Formulation of network equations, Source transformation, Loop variable analysis, Node variable analysis. Network theorem: Superposition, Thevenin’s, Norton’s & Maximum power transfer theorem. Millman’s theorem and its application in three phase unbalanced circuit analysis. Solution of Problems with DC & AC sources.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Graph theory and Networks equations: Concept of Tree, Branch, Tree link, Incidence matrix, Tie-set matrix and loop currents, Cut set matrix and node pair potentials. Duality, Solution of Problems.</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Two port networks analysis: Open circuit Impedance & Short circuit Admittance parameter, Transmission parameters, Hybrid parameters and their</td>
<td>4</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

Inter relations, Driving point impedance & Admittance. Solution of Problems

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz’s theorem. Solution of problems</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Electrostatic field: Coulomb’s law, field intensity, Gauss’s law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor –dielectric, Conductor-free space. Poisson’s and Laplace’s equation, General procedure for solving Poisson’s and Laplace’s equation. Solution of problems</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Magnetostatic fields: Biot- savart law, Ampere’s circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field,</td>
<td>8</td>
</tr>
</tbody>
</table>

Text Books:
1. Networks and Systems, D. Roy Chowdhury, New Age International Publishers

Reference Books:
1. Network Analysis, M.E. Valkenburg, Pearson Education.

FIELD THEORY

EE-302

Credit: 4 Contact: 3L+1T
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Magnetic torque and moments, Magnetisation in material, Magnetic boundary condition, Inductor and Inductances, Magnetic energy, Force on magnetic material. Solution of problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

Practical

Analog & Digital Electronic Circuit

EC (EE)-391

Credit: 2
Contact: 3

1. Study of Ripple and Regulation characteristics of full wave rectifier with and without capacitor filter.
2. Study of Zener diode as voltage regulator.
3. Construction of two stage R-C coupled amplifier & study of its gain and Bandwith.
5. Realisation V-I & I-V converter using Operational Amplifier.
7. Study of DAC & ADC
8. Realisation of basic gates using Universal logic gates.
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

10. Design of Combinational circuit for BCD to decimal conversion to drive 7-segment display using Multiplexer.

NUMERICAL METHODS
Code : M(CS) 391
Credits : 1

1. Assignments on Newton forward /backward, Lagrange’s interpolation.
2. Assignments on numerical integration using Trapezoidal rule, Simpson’s 1/3 rule, Weddle’s rule.
3. Assignments on numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations.
4. Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton-Raphson methods.
5. Assignments on ordinary differential equation: Euler’s and Runge-Kutta methods.
6. Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica.

ELECTRIC CIRCUIT THEORY LABORATORY
EE-391
Credit: 2 Contact: 3

1. Transient response of R-L and R-C network: simulation with PSPICE /Hardware
2. Transient response of R-L-C series and parallel circuit: Simulation with PSPICE/ Hardware
3. Determination of Impedance (Z) and Admittance (Y) parameter of two port network: Simulation / Hardware.
5. Frequency response of BP and BR filters: Simulation /Hardware.
6. Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and analog form.
7. Determination of Laplace transform and Inverse Laplace transform using MATLAB.
8. Amplitude and Phase spectrum analysis of different signals using MATLAB.
9. Verification of Network theorem using SPICE

PAPER NAME : TECHNICAL REPORT WRITING & LANGUAGE LABORATORY PRACTICE
PAPER CODE: HU 381
CONTACT: 1L+2P
CREDIT : 2

Guidelines for Course Execution:

Objectives of this Course: This course has been designed:
1. To inculcate a sense of confidence in the students.
2. To help them become good communicators both socially and professionally.
3. To assist them to enhance their power of Technical Communication.
Detailed Course Outlines:

A. Technical Report Writing: 2L+6P

1. Report Types (Organizational / Commercial / Business / Project)
2. Report Format & Organization of Writing Materials
3. Report Writing (Practice Sessions & Workshops)

B. Language Laboratory Practice

I. Introductory Lecture to help the students get a clear idea of Technical Communication & the need of Language Laboratory Practice Sessions 2L

2. Conversation Practice Sessions: (To be done as real life interactions) 2L+4P
 a) Training the students by using Language Lab Device/Recommended Texts/cassettes/cd’s to get their Listening Skill & Speaking Skill honed
 b) Introducing Role Play & honing over all Communicative Competence

3. Group Discussion Sessions: 2L+6P
 a) Teaching Strategies of Group Discussion
 b) Introducing Different Models & Topics of Group Discussion
 c) Exploring Live/Recorded GD Sessions for mending students’ attitude/approach & for taking remedial measure

Interview Sessions; 2L+6P
 a) Training students to face Job Interviews confidently and successfully
 b) Arranging Mock Interviews and Practice Sessions for integrating Listening Skill with Speaking Skill in a formal situation for effective communication

4. Presentation: 2L+6P
 a) Teaching Presentation as a skill
 b) Strategies and Standard Practices of Individual/Group Presentation
 c) Media & Means of Presentation: OHP/POWER POINT/ Other Audio-Visual Aids

5. Competitive Examination: 2L+2P
 a) Making the students aware of Provincial/National/International Competitive Examinations
 b) Strategies/Tactics for success in Competitive Examinations
 c) SWOT Analysis and its Application in fixing Target

Books – Recommended:
Nira Konar: English Language Laboratory: A Comprehensive Manual PHI Learning, 2011

References:
Adrian Duff et. al. (ed.): Cambridge Skills for Fluency
 A) Speaking (Levels 1-4 Audio Cassettes/Handbooks)
 B) Listening (Levels 1-4 Audio Cassettes/Handbooks)
Cambridge University Press 1998
Mark Hancock: English Pronunciation in Use 4 Audio Cassettes/CD’S OUP 2004
Syllabus for B.Tech(Electrical Engineering) Second Year
& 3rd Year (Proposed)
Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

IV Semester

Theory

VALUES & ETHICS IN PROFESSION

HU-401
Contracts: 3L
Credits- 3

Science, Technology and Engineering as knowledge and as Social and Professional Activities

Effects of Technological Growth:

Rapid Technological growth and depletion of resources, Reports of the Club of Rome. Limits of growth: sustainable development
Energy Crisis: Renewable Energy Resources
Environmental degradation and pollution. Eco-friendly Technologies. Environmental Regulations,
Environmental Ethics
Appropriate Technology Movement of Schumacher; later developments
Technology and developing notions. Problems of Technology transfer, Technology assessment impact analysis.

Ethics of Profession:

Engineering profession: Ethical issues in Engineering practice, Conflicts between business demands and professional ideals. Social and ethical responsibilities of Technologists. Codes of professional ethics. Whistle blowing and beyond, Case studies.

Profession and Human Values:

Values Crisis in contemporary society
Nature of values: Value Spectrum of a good life
Psychological values: Integrated personality; mental health
Societal values: The modern search for a good society, justice, democracy, secularism, rule of law, values in Indian Constitution.
Aesthetic values: Perception and enjoyment of beauty, simplicity, clarity
Moral and ethical values: Nature of moral judgements; canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility.

Books:
Syllabus for B.Tech(Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

PH (EE)-401 4: Physics

<table>
<thead>
<tr>
<th>Contacts</th>
<th>3L + 1T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>Quantum mechanics:</td>
<td></td>
</tr>
<tr>
<td>- Generalized co-ordinates, Lagrange’s equation of motion and Lagrangian, generalized force potential, moment and energy. Hamilton's Equation of motion and Hamiltonian. Properties of Hamilton and Hamilton’s equation of motion.</td>
<td>6</td>
</tr>
<tr>
<td>- Concept of probability and probability density, operator, Commutator, Formulation of quantum mechanics and Basic postulates, Operator correspondence, Time dependent Schrödinger’s equation, formulation of time independent Schrödinger’s equation by method of separation of variables, Physical interpretation of wave function (\Psi) (normalization and probability interpretation), Expectation values, Application of Schrödinger equation-Particle in an infinite square well potential (1-D and 3-D potential well), Discussion on degenerate levels.</td>
<td>10</td>
</tr>
<tr>
<td>Module-II</td>
<td></td>
</tr>
<tr>
<td>Statistical mechanics:</td>
<td></td>
</tr>
<tr>
<td>- Concept of energy levels and energy states. Microstates, Macrostates and thermodynamic probability, equilibrium macrostate. MB, FD, BE statistics (no deduction necessary), fermions, bosons (definitions in terms of spin, examples), physical significance and application, classical limits of quantum statistics. Fermi distribution at zero and non –zero temperature.</td>
<td>4</td>
</tr>
<tr>
<td>Module-III</td>
<td></td>
</tr>
<tr>
<td>Dielectric Properties:</td>
<td></td>
</tr>
<tr>
<td>- Dielectric Material: Concept of Polarization, the relation between D, E and P, Polarizability, Electronic, Ionic, Orientation & Space charge polarization, behavior of Dielectric under alternating field, Dielectric losses.</td>
<td>3</td>
</tr>
<tr>
<td>The Magnetic properties:</td>
<td></td>
</tr>
<tr>
<td>Module-IV</td>
<td></td>
</tr>
<tr>
<td>Crystal structure</td>
<td></td>
</tr>
</tbody>
</table>
Crystal structure- Bravais lattice, Miller indices

Crystal diffraction (qualitative), Bragg's law and reciprocal lattice, Brillouin zone.

Free electron theory of metal – calculation of Fermi energy, density of states.

Band theory of solids- Bloch theorem, Kronig Penny model.

Electronic conduction in solids- Drude’s theory, Boltzmann equation, Wiedemann Frantz law.

Semiconductor-Band structure, concept of electron and holes, Fermi level, density of states.

Text Books:
1. Perspectives of Modern Physics: A. Baiser
2. Modern Physics and Quantum Mechanics E.E. Anderson
5. Engineering Physics: R.K. Kar
6. Classical Mechanics:
 a) A.K. Roychaudhuri
 b) R.G. Takwal & P.S. Puranic
7. Quantum Mechanics:
 a) Eisberg & Resnic
 b) A.K. Ghatak & S. Lokanathan
 c) S.N. Ghoshal
8. Statistical Mechanics and Thermal Physics:
 a) Sears and Salinger
 b) Avijit Lahiri
 c) Evelyn Guha
9. Solid State Physics:
 a) A.J. Dekker
 b) C. Kittel
 c) Aschroff & Mermin
 d) S.O. Pillai

ME(EE)411: Thermal Power Engineering
Contacts : 3L
Credits : 3

Text:
1. P.K.Nag- Engineering Thermodynamics – TMH, 2/e
2. P K Nag- Power Plant Engg. - TMH Pub

Reference:
1. Cengel --- Thermodynamics, 3/e, TMH
2. Et-Wakil—Power Plant Engineering, MH

CH401: Basic Environmental Engineering & Elementary Biology
Contacts : 3L
Credits : 3

General
Basic ideas of environment, basic concepts, man, society & environment, their interrelationship.

1L
Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development.

2L
Materials balance: Steady state conservation system, steady state system with non conservative pollutants, step function.

1L
Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering.

2L

Ecology
Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function.

1L
Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web. 2L
Biogeochemical Cycle - definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. 1L

Biodiversity - types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity. 2L

Air pollution and control

Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. 1L

Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems. 1L

Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth’s heat budget. 1L

Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion). 2L

Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model. 2L

Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant.

Sources and effect of different air pollutants - Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. 2L

Smog, Photochemical smog and London smog.

Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green house gases, effect of ozone modification. 1L

Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP, cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). 1L

Water Pollution and Control

Hydrosphere, Hydrological cycle and Natural water.

Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. 2L
River/Lake/ground water pollution: River: DO, 5 day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river[deoxygenation, reaeration], COD, Oil, Greases, pH.

2L

Lake: Eutrophication [Definition, source and effect].

1L

Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)

1L

Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening]

Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition.

2L

Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic

1L

Land Pollution

Lithosphere; Internal structure of earth, rock and soil

1L

Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).

2L

Noise Pollution

Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise]

1L

Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L_{eq} (18 hr Index), Ldn.

Noise pollution control.

1L

Environmental Management:

Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol.

2L

References/Books

ELECTRIC MACHINE-I

EE-401
Credit: 4
3L+1T

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>Electromechanical Energy Conversion Principle, Singly Excited Magnetic System and Doubly Excited Magnetic system. Physical concept of torque production; Electromagnetic torque and Reluctance torque.</td>
<td>2</td>
</tr>
<tr>
<td>Concept of General terms pertaining to Rotating Machines: Electrical & Mechanical degree, Pole pitch, Coil, Generated EMF in full pitched coil, Generated EMF in a short pitched coil, EMF polygon, Distribution factor, Pitch factor. MMF produced by Distributed Windings, MMF of a coil, MMF of single phase distributed Winding, MMF waveform of Commutator machines.</td>
<td>2</td>
</tr>
<tr>
<td>Module-II</td>
<td></td>
</tr>
<tr>
<td>DC Machines:</td>
<td></td>
</tr>
<tr>
<td>EMF generated in the armature. Methods of Excitation, Armature reaction & its effect in the performance, Methods of decreasing the effects of Armature reaction, Effect of Brush shift.</td>
<td>3</td>
</tr>
<tr>
<td>Commutation process, Resistance commutation, Delayed commutation, Voltage commutation, Improvement of Commutation.</td>
<td>2</td>
</tr>
<tr>
<td>Operating Characteristics of DC Generators: Separately Excited generators, Shunt Generators, Series Generators and Compound Generators.</td>
<td>2</td>
</tr>
<tr>
<td>Torque equation of D.C motor, Operating Characteristics of Shunt, Series & Compound motors.</td>
<td>2</td>
</tr>
<tr>
<td>Losses and efficiency of DC machines, Hopkinson’s and Swinburne’s test.</td>
<td>2</td>
</tr>
<tr>
<td>D.C Machine application: Generator application, Motor application</td>
<td>1</td>
</tr>
<tr>
<td>Module-III</td>
<td></td>
</tr>
<tr>
<td>3-Phase Induction machine:</td>
<td></td>
</tr>
<tr>
<td>Induction motor as a Transformer, Flux and MMF phasors in Induction motors, Equivalent circuit, Performance equations, Induction motor phasor diagram</td>
<td>1</td>
</tr>
<tr>
<td>Torque-slip characteristic, Power slip characteristic, Determination of equivalent circuit parameters.</td>
<td>2</td>
</tr>
<tr>
<td>Methods of starting of squirrel Cage and Wound rotor Motors.</td>
<td>2</td>
</tr>
<tr>
<td>Speed control of Induction motor</td>
<td>1</td>
</tr>
<tr>
<td>Polarity Test, Application of Polyphase Induction motor.</td>
<td>2</td>
</tr>
<tr>
<td>Module-IV</td>
<td></td>
</tr>
<tr>
<td>3-Phase Transformer:</td>
<td></td>
</tr>
<tr>
<td>Determination of polarity and connections (star/star, star/delta, delta/star, star/zigzag, delta/zigzag, open delta), Phasor groups.</td>
<td>3</td>
</tr>
</tbody>
</table>

Syllabus for B.Tech(Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

- Effect of unbalanced loading, Production of Harmonics in Transformer and its suppression,
- 3 phase to 2 phase transformation, Scott connection, 3 phase to 6 phase connections, Double star and Double delta,
- 3 winding transformer: Parameter estimation, application,
- Parallel operation of Transformers, Introduction to Tap changing transformer and its function.
- **Special Transformers:** Potential transformer, Current transformer, Pulse transformer, Audio frequency transformer, Grounding transformer, Pulse transformer.

<table>
<thead>
<tr>
<th>Numerical Problems to be solved in the tutorial classes.</th>
</tr>
</thead>
</table>

Text Books:

Reference Books:
2. Electrical Machines, R.K. Srivastava, Cengage Learning

ELECTRICAL & ELECTRONIC MEASUREMENT

EE-402 Credit: 3 3L

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>Measurements:</td>
<td>3</td>
</tr>
<tr>
<td>Method of measurement, Measurement system, Classification of instruments, Definition of accuracy, Precision, Resolution, Speed of response, Error in measurement, Classification of errors, loading effect due to shunt and series connected instruments.</td>
<td></td>
</tr>
<tr>
<td>Analog meters:</td>
<td>3</td>
</tr>
<tr>
<td>General features, Construction, Principle of operation and torque equation of Moving coil, Moving iron, Electrodynamometer, Induction instruments</td>
<td></td>
</tr>
<tr>
<td>Principle of operation of the Electrostatic, Thermoelectric, Rectifier type instruments, Extension of instrument ranges and multipliers.</td>
<td></td>
</tr>
</tbody>
</table>

Module-II
Instrument transformer:

Measurement of Power:
- Principle of operation of Electrodynamic & Induction type wattmeter. Wattmeter errors.

Measurement of resistance:
- Measurement of medium, low and high resistances, Megger.

Module-III

<table>
<thead>
<tr>
<th>Measurement of Energy:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction, theory and application of AC energy meter, testing of energy meters.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle of operation and application of Crompton’s DC potentiometer, Polar and Co-ordinate type AC potentiometer. Application.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC Bridges:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement of Inductance, Capacitance and frequency by AC bridges.</td>
<td></td>
</tr>
</tbody>
</table>

Module-IV

<table>
<thead>
<tr>
<th>Cathode ray oscilloscope (CRO):</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement of voltage, current, frequency & phase by oscilloscope. Frequency limitation of CRO. Sampling and storage oscilloscope, Double beam CRO.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronic Instruments:</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sensors & Transducers:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to sensors & Transducers, Strain gauge, LVDT, Temperature transducers, Flow measurement using magnetic flow measurement.</td>
<td></td>
</tr>
</tbody>
</table>

Numerical Problems to be solved in the tutorial classes.
Syllabus for B.Tech(Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

Text Books:

Reference Books:

Practical

Physics Lab-2
Code:PH(EE)491 PH-491
Contacts: (3P)
Credit: (2)

1. Determination of dielectric constant of a given dielectric material.
2. Determination of thermo electric power at a certain temperature of a given thermocouple.
3. Determination of specific charge (e/m) of electron by J.J. Thompson’s method.
4. Determination of Planck constant using photocell.
5. Determination of Lande’g factor using Electron spin resonance spectrometer.
6. Determination of Stefan’s radiation constant.
7. Verification of Bohr’s atomic orbital theory through Frank-Hertz experiment.
10. Determination of Band gap of semiconductor.
11. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

ME(EE)481: Thermal Power Engineering Lab
Contacts : 3L
Credits : 3

1. Study of Cut Models – Boilers IC Engines
 - Lanchashire Boiler
 - Bahcock & Willcox Boiler
 - Cochran Boiler
 - Vertical Tubular Boiler
 - Locomotive Boiler
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

- 4S Diesel Engine
- 4S Petrol Engine
- 2S Petrol Engine

2. Load Test on 4 Stroke Petrol Engine & Diesel Engine by Electrical Load Box.
3. Load Test on 4 Stroke Diesel Engine by Rope Brake Dynamometer.
6. To find the Calorific Value of Diesel Fuel & Coal by Bomb Calorimeter.
7. To find the Flash Point & Fire Point of Petrol & Diesel Fuel.
8. To find the Cloud Point & Pour Point of Petrol & Diesel Fuel.
9. To find Carbon Particle Percentage in Diesel Engine Exhaust Smoke by Smokemeter and trace the BHP Vs. % Carbon Curve.
11. To find out the Boiler performance – Boiler efficiency & Steam evaporation rate.
12. To visit a Thermal Power Station & study of the followings:
 a) Boiler b) Steam pipe c) Furnace
d) Economizer e) Preheater f) Steam turbines
g) Alternator h) Water treatment plant i) E. S. P.

ELECTRIC MACHINE LABORATORY-I

EE-491 Credit: 2 3P

1. Study of the characteristics of a separately excited DC generator.
2. Study of the characteristics of a DC motor
3. Study of methods of speed control of DC motor
4. Study of the characteristics of a compound DC generator (short shunt).
7. Polarity test on a single phase transformer & study of different connections of three phase transformer.
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

Reference Books:

ELECTRIC AND ELECTRONIC MEASUREMENT LABORATORY

EE-492 Credit: 2 3P

List of Experiments:
1. Instrument workshop- Observe the construction of PMMC, Dynamometer, Electrothermal and Rectifier type of instruments, Oscilloscope and Digital multimeter.
2. Calibrate moving iron and electrodynamometer type ammeter/voltmeter by potentiometer.
3. Calibrate dynamometer type wattmeter by potentiometer.
4. Calibrate AC energy meter.
9. Measurement of Inductance by Anderson bridge
10. Measurement of capacitance by De Sauty Bridge.
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

EE Proposed 3rd Year Syllabus

5th Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credit s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>HU-501</td>
<td>Economics for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>EE-501</td>
<td>Electric machine-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EE-502</td>
<td>Power system-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>EE-503</td>
<td>Control system-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EE-504</td>
<td>a. Data structure & algorithm</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Computer Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Micro Processor & Microcontroller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Total: 18 18

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credit s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EE-591</td>
<td>Electric machine-II</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EE-592</td>
<td>Power system-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE-593</td>
<td>Control system-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE-594</td>
<td>a. Data structure & algorithm</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Computer Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Micro Processor & Microcontroller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Total: 15 10

TOTAL OF SEMESTER: 33 28
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

6th Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>HU-601</td>
<td>Principle of Management</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>EE-601</td>
<td>Control System-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EE-602</td>
<td>Power System-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EE-603</td>
<td>Power Electronics</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EE-604</td>
<td>a. Digital Signal Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Communication Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. VLSI & Microelectronics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EE-605</td>
<td>a. Software Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. DBMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Object oriented programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Embedded system</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 20 20

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EE-691</td>
<td>Control System-II</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EE-692</td>
<td>Power system-II</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE-693</td>
<td>Power Electronics</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE-694</td>
<td>a. Software Engineering</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. DBMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Object oriented programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Embedded system</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 12 8

TOTAL SEMESTER: 32 28

Industrial training conducted after 6th semester
Syllabus for B.Tech (Electrical Engineering) Second Year

& 3rd Year (Proposed)

Revised Syllabus of B.Tech EE (for the students who were admitted in Academic Session 2010-2011)

7th Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credit s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EE-701</td>
<td>Electric drive</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>EE-702</td>
<td>Utilization of Electric power</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EE-703</td>
<td>(a) Power system-III</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Control system-III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Electric Machine-III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EE-704</td>
<td>(a) High voltage Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Power Plant Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Power generation and economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d) Non conventional Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EE-705</td>
<td>(a) Computer Network</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) AI & Soft Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Digital Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d) Digital Image Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credit s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EE-781</td>
<td>Seminar on industrial training</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EE-791</td>
<td>Electric Drive</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE-792</td>
<td>(a) Computer Network</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) AI & Soft Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Digital Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d) Digital Image Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EE-782</td>
<td>Electrical machine & system design</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE-783</td>
<td>Project-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 9 10

TOTAL OF SEMESTER: 18 02 09 29 27

26
Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-801</td>
<td>Organizational Behaviour</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>EE-801</td>
<td>(a) FACTs & HVDC transmission (b) Illumination Engineering (c) Energy management & audit</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE-802</td>
<td>(a) Power plant instrumentation & Control (b) Sensors & Transducers (c) Biomedical Instrumentation (d) Process control</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>08</td>
<td>08</td>
</tr>
</tbody>
</table>

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE-881</td>
<td>Project</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>EE-882</td>
<td>Design (industrial problem)</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE-883</td>
<td>Grand Viva</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total of Practical / Sessional</td>
<td></td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL SEMESTER</td>
<td></td>
<td>26</td>
<td>21</td>
</tr>
</tbody>
</table>

Detailed Syllabus will be uploaded shortly